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● An important type of algorithm for predictive modeling machine learning.
● Their purpose is to serve as a model that predicts the value of a target (dependent) 

variable based on the values of several input (independent) variables.
● A tree model is built by being trained on a training dataset. The resulting tree can 

be stored and used later on for data analysis / classification.
● Constructed in a top-down fashion through recursive partitioning.

Decision Trees



What is CaRT? 

● CaRT stands for ‘Classification and Regression trees.’
● It was introduced in 1984 by Leo Breiman to refer to Decision Tree algorithms that are 

used for classification or regressive modeling problems.
● CaRT is an umbrella term that refers to the following types of decision trees:

○ Classification Trees: The target variable is categorical and the tree is used to 
identify the "class" within which a target variable would likely fall.

○ Regression Trees: The target variable is continuous and the tree is used to predict 
its value.



Classification vs. Regression

A visual example of Classification vs. Regression.



A very simple decision tree.



Components of CaRT Model Representation

● Nodes
○ Root Node: The starting point of the 

tree, contains some criterion or 
question that has to be answered

○ Decision Nodes: Contain criteria or 
questions that have to be answered

○ Leaf Nodes: Also commonly known 
as terminal nodes. Contain the final 
category or predicted value for the 
data

● Branches
○ Arrows connecting nodes, showing 

the flow from question to answer



How is a CaRT model stored?
● Once a CaRT model is trained, it can be stored as a set of rules (in the form of 

conditional statements).
● These rules act to control the flow of a test instance being evaluated via the trained 

model.
● Given an test instance (with parameters), the model will evaluate it according to 

this set of rules and a decision (or estimated value in the case of regression trees) 
will be output.

● This stored model can be retrieved and used later for future data analysis or 
classification tasks.



How is a CaRT model stored?

Set of rules

Tree
Question:
What gender is a person with a height of 
150cm and a weight of 90kg? 



Feature Choosing

Creating a CaRT model involves selecting features of input instances and split 
conditions according to those features until a suitable tree is constructed. 

Feature Selection → The process of deciding which variables of the data are 
important enough to include in the model. Feature selection is done by the 
algorithm itself, not manually.

The selected features are what dictate the construction of the tree, and 
determine where its split points will be.



Conditions for Splitting

To decide how to split nodes, a process called recursive partitioning is used. 

This is a process where all the data is split into partitions, according to 
different split conditions using a cost function. The condition with the best 
cost is selected. This process is repeated until the data is sufficiently split.

Note: This is considered a greedy approach because the best split condition is chosen at each node, 
without concern for future split choices. 



How are split conditions decided for classification 
problems? 



Cost function for classification problems

● For classification problems, the gini index function, which ranges 
between 0 and 1, is used as a cost function.

● This provides an indication of how “pure” the leaf nodes are (how mixed 
the training data partitioned to each node is).

● If at some node, all the data belongs to a single class, then the node is 
considered pure (a gini index of 0) → this will lead to a terminal node.

● A node that has a 50/50 split of classes for a binary classification problem 
(worst purity) will have a gini index of 0.5. 



Gini index formula

Where:

● G is the gini index over all classes (for a given parameter),
● pᵢ is the probability of an object being classified to a particular class i,
● C is the number of possible classes for each instance (e.g. for {yes, no}, C = 2).



Example dataset: Golf playing decisions 

Features

● Outlook → Sunny, Overcast, Rain
● Temperature → Cool, Mild, Hot
● Humidity → High, Normal
● Wind → Weak, Strong



Let’s calculate the gini index
First, we calculate the gini index for each individual feature. The one with the lowest cost will be used 
as the feature to take into consideration for the first decision node.

‘Outlook’ feature



Gini index for ‘outlook’ feature

Weighted sum of gini indexes for ‘outlook’ feature:

yes no



The winning feature

Outlook has the lowest gini index, so 
it’s our first split condition.



Purity = 0 → Terminal node 
✓

Tree building



Purity ≠ 0 → Repeat feature selection process Purity ≠ 0 → Repeat feature selection process





Final tree



Classification 
Tree 

Implementation 
in Python



How a CaRT model is grown
The CaRT model provides a 
recipe in order to grow the 
tree representation.

1. Features to choose
2. Conditions for splitting
3. Stopping rules for deciding 

when a branch is terminal
4. Pruning



How are split conditions decided for regression problems? 



What are Regression Trees? 
● Regression trees are a variant of 

decision trees. 
● Unlike classification trees, they 

are designed to approximate 
real-valued functions. 

● It is built utilizing recursive 
partitioning, which is an iterative 
process that splits the data into 
partitions or branches and 
continues splitting each partition 
into smaller groups.



Feature choosing for regression problems

● There are many splitting criteria for regression problems.
● One of the most common ones are weighted variance of the nodes 

because we want minimum variation in the nodes after the split.

● The algorithm selects the split that minimizes the sum of the standard 
deviations from the mean in two separate partitions. 

● The splitting rule continues until it hits a user-specified minimum node 
size or if sum of standard deviation to the node is zero.



Stopping Criteria

● Because CaRT proceeds recursively, it is important to have a stopping 
criterion. Imagine a dead end to let them know to not go further. 

● Stopping criteria controls if the tree growing process should stop or 
continue. 

● The below are examples of stopping rules that are used: 
○ If a node becomes pure: If all cases result in the same identical value
○ If the current tree depth reaches the user-specified maximum node size value



Pruning the Tree

Pruning → Optimizing a decision tree. This is accomplished by simplifying or 
compressing by removing sections of the tree that are redundant to classify 
instances. This process came about from an attempt to prevent overfitting in 
trees.

There are two types of pruning.

● Pre-pruning
● Post-pruning



Pre-Pruning

● We know it as the stopping 
criterion 

● It stops the tree-building process 
early, before it produces leaves 
with very small sample sizes.

● It prevents a complete induction 
of the training set by introducing 
a stop criterion



Post-Pruning

● Post-Pruning is what people normally refer to when they say pruning.
● Nodes and subtrees are replaced with leaves to improve complexity. 

Pruning can not only reduce the size but also improve the classification 
accuracy of unseen objects.

● It is broken up into: 
○ Bottom-Up Pruning
○ Top-Down Pruning



Post-Pruning

Bottom-Up Pruning

● Start from the terminal nodes and follow 
the recursive upwards and then 
determine the relevance of each 
individual node. If the relevance for the 
classification is not given, the node is 
dropped or replaced by a leaf. 

● Advantage: No relevant sub-trees can 
be lost with this method.

● Methods: Reduced Error Pruning, 
Minimum Cost Complexity Pruning, 
Minimum Error Pruning 

Top-Down Pruning

● Starts from the root node. Following the 
structure, it checks and decides whether 
a node is relevant for the classification 
for all n items. If it is irrelevant, the node 
is replaced by a leaf or dropped.

● Disadvantage: By pruning an inner 
node, an entire subtree can be dropped.

● Methods: Pessimistic Error Pruning



Regression example
● We will be utilizing a similar dataset to the 

classification example. The only difference between 
the two datasets are in the decision columns. 
Regression trees require numbers. 

Features:

● Outlook → Sunny, Overcast, Rain
● Temperature → Cool, Mild, Hot
● Humidity → High, Normal
● Wind → Weak, Strong



Let’s Calculate the Global Standard Deviation (all golfers)
golf_players = {25, 30, 46, 45, 52, 23, 43, 35, 38, 46, 48, 52, 44, 
30}

avg(golf_players) = 

SD(golf_players)  =  
● Where x̄ is the average of 

all x’s 
● x is each individual 

instance in the set of all x’s
● n is the total number of x’s 



Feature Splitting

We must now calculate the standard deviation for each of the features. 

The feature with the highest standard deviation reduction would be the 
optimal feature. We continue calculating the Standard Deviation Reduction 
until we reach terminal nodes. 

● To calculate the Standard Deviation Reduction (SDR) first calculate the 
Standard Deviation (SD) of the full dataset (shown in the slide above), 
known as the global SD. Then calculate each features’ Weighted 
Standard Deviation (WSD) and then subtract the WSD from the global 
SD.  



Standard Deviation Reduction Calculation

● First we need to calculate the WSD for each of the features.
● Looking at the Outlook feature, it divides into three categories, Sunny, 

Overcast and Rain. 
● We break the Outlook feature up into each of the categories because we 

need to calculate the SD for each of the outlook candidates.



Sunny Outlook

golf_players = {25, 30, 35, 38, 48}

avg(golf_players |sunny) = 

SD(golf_players | sunny)  =



Overcast Outlook
golf_players = {46, 43, 52, 44}

avg(golf_players | overcast) = 

SD(golf_players | overcast)  =



Rainy Outlook

golf_players = {45, 52, 23, 46, 30}

avg(golf_players | rainy) = 

SD(golf_players | rainy)  =



Calculating the Weighted Standard Deviation

To calculate the WSD, we take each candidates’ number of instances, divide it 
by total instances and then multiply it by their SD. For this category, there are 
14 total instances.

WSD(outlook) = (4/14)x3.49 + (5/14)x10.87 + (5/14)x7.78 = 7.66

SDR(outlook) = 9.32 - 7.66 = 1.66 



Repeat for all Features

Winning Feature



Tree Building
We can apply a stopping 
criterion here. Since this is a 
small data set, if there are 4 
or less instances, we will stop. 
Otherwise, we will be 
overfitting the data.



Recursive Partitioning

Since the stopping criterion is not applied to the other two outlook features, 
we now have to work on those partitions. 



Final tree



Regression Tree 
Implementation 

in Python



Quote from stackexchange

“Any multi-way split can be represented as a series of two-way splits. For a 
three-way split, you can split into A, B, and C by first splitting into A&B versus C 
and then splitting out A from B.

A given algorithm might not choose that particular sequence (especially if, like 
most algorithms, it's greedy), but it certainly could. And if any randomization 
or stagewise procedures are done like in random forests or boosted trees, the 
chances of finding the right sequence of splits goes up. As others have 
pointed out, multi-way splits are computationally costly, so given these 
alternatives, most researchers seem to have chosen binary splits.”



Advantages and Disadvantages of Decision Trees

Advantages

● Simple to understand and interpret
● Follows the same process by which 

humans make decisions in real life
● Useful for decision-related problems
● Helps in visualizing all possible 

outcomes
● Less data cleanup in comparison to 

other algorithms

Disadvantages

● Overfitting issues
● They are unstable, when there is a 

small change in data, it can cause a 
large change in the structure of the 
decision tree

● For classification trees, the information 
gained can be biased



CaRT is more 
connected to reality 

than we realize.
Decision trees are important 

to know and understand 
because they are used for 
more than just computer 

science!

Some examples where decision 
trees are used: 

● Medical practices: used for 
medical diagnosis

● Business analytics: expansion 
opportunities based on sales

● Marketing strategies: using 
demographics to determine 
popular products

● Automated telephone 
systems: “For customer 
representative press 1” 



Further Study: Language Modeling Applications

● Application of Semantic Classification Trees to Natural Language 
Understanding 

● Part of Speech Tags and Decision Trees for Language Modeling
● Automatic Classification of Dialogue Acts of Semantic Classification Trees 

and Polygrams 
● Multilingual Prosody Modeling Using Cascades of Regression Trees and 

Neural Networks



Thank you for 
listening! 
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