
CaRT (Decision Trees)
Classification and Regression Trees

Derek Andersen and Joanne Chau

● Introduction to CaRT

● Classification trees

● Python implementation of classification tree

● Regression trees

● Python implementation of regression tree

● Conclusion

Agenda

● An important type of algorithm for predictive modeling machine learning.
● Their purpose is to serve as a model that predicts the value of a target (dependent)

variable based on the values of several input (independent) variables.
● A tree model is built by being trained on a training dataset. The resulting tree can

be stored and used later on for data analysis / classification.
● Constructed in a top-down fashion through recursive partitioning.

Decision Trees

What is CaRT?

● CaRT stands for ‘Classification and Regression trees.’
● It was introduced in 1984 by Leo Breiman to refer to Decision Tree algorithms that are

used for classification or regressive modeling problems.
● CaRT is an umbrella term that refers to the following types of decision trees:

○ Classification Trees: The target variable is categorical and the tree is used to
identify the "class" within which a target variable would likely fall.

○ Regression Trees: The target variable is continuous and the tree is used to predict
its value.

Classification vs. Regression

A visual example of Classification vs. Regression.

A very simple decision tree.

Components of CaRT Model Representation

● Nodes
○ Root Node: The starting point of the

tree, contains some criterion or
question that has to be answered

○ Decision Nodes: Contain criteria or
questions that have to be answered

○ Leaf Nodes: Also commonly known
as terminal nodes. Contain the final
category or predicted value for the
data

● Branches
○ Arrows connecting nodes, showing

the flow from question to answer

How is a CaRT model stored?
● Once a CaRT model is trained, it can be stored as a set of rules (in the form of

conditional statements).
● These rules act to control the flow of a test instance being evaluated via the trained

model.
● Given an test instance (with parameters), the model will evaluate it according to

this set of rules and a decision (or estimated value in the case of regression trees)
will be output.

● This stored model can be retrieved and used later for future data analysis or
classification tasks.

How is a CaRT model stored?

Set of rules

Tree
Question:
What gender is a person with a height of
150cm and a weight of 90kg?

Feature Choosing

Creating a CaRT model involves selecting features of input instances and split
conditions according to those features until a suitable tree is constructed.

Feature Selection → The process of deciding which variables of the data are
important enough to include in the model. Feature selection is done by the
algorithm itself, not manually.

The selected features are what dictate the construction of the tree, and
determine where its split points will be.

Conditions for Splitting

To decide how to split nodes, a process called recursive partitioning is used.

This is a process where all the data is split into partitions, according to
different split conditions using a cost function. The condition with the best
cost is selected. This process is repeated until the data is sufficiently split.

Note: This is considered a greedy approach because the best split condition is chosen at each node,
without concern for future split choices.

How are split conditions decided for classification
problems?

Cost function for classification problems

● For classification problems, the gini index function, which ranges
between 0 and 1, is used as a cost function.

● This provides an indication of how “pure” the leaf nodes are (how mixed
the training data partitioned to each node is).

● If at some node, all the data belongs to a single class, then the node is
considered pure (a gini index of 0) → this will lead to a terminal node.

● A node that has a 50/50 split of classes for a binary classification problem
(worst purity) will have a gini index of 0.5.

Gini index formula

Where:

● G is the gini index over all classes (for a given parameter),
● pᵢ is the probability of an object being classified to a particular class i,
● C is the number of possible classes for each instance (e.g. for {yes, no}, C = 2).

Example dataset: Golf playing decisions

Features

● Outlook → Sunny, Overcast, Rain
● Temperature → Cool, Mild, Hot
● Humidity → High, Normal
● Wind → Weak, Strong

Let’s calculate the gini index
First, we calculate the gini index for each individual feature. The one with the lowest cost will be used
as the feature to take into consideration for the first decision node.

‘Outlook’ feature

Gini index for ‘outlook’ feature

Weighted sum of gini indexes for ‘outlook’ feature:

yes no

The winning feature

Outlook has the lowest gini index, so
it’s our first split condition.

Purity = 0 → Terminal node
✓

Tree building

Purity ≠ 0 → Repeat feature selection process Purity ≠ 0 → Repeat feature selection process

Final tree

Classification
Tree

Implementation
in Python

How a CaRT model is grown
The CaRT model provides a
recipe in order to grow the
tree representation.

1. Features to choose
2. Conditions for splitting
3. Stopping rules for deciding

when a branch is terminal
4. Pruning

How are split conditions decided for regression problems?

What are Regression Trees?
● Regression trees are a variant of

decision trees.
● Unlike classification trees, they

are designed to approximate
real-valued functions.

● It is built utilizing recursive
partitioning, which is an iterative
process that splits the data into
partitions or branches and
continues splitting each partition
into smaller groups.

Feature choosing for regression problems

● There are many splitting criteria for regression problems.
● One of the most common ones are weighted variance of the nodes

because we want minimum variation in the nodes after the split.

● The algorithm selects the split that minimizes the sum of the standard
deviations from the mean in two separate partitions.

● The splitting rule continues until it hits a user-specified minimum node
size or if sum of standard deviation to the node is zero.

Stopping Criteria

● Because CaRT proceeds recursively, it is important to have a stopping
criterion. Imagine a dead end to let them know to not go further.

● Stopping criteria controls if the tree growing process should stop or
continue.

● The below are examples of stopping rules that are used:
○ If a node becomes pure: If all cases result in the same identical value
○ If the current tree depth reaches the user-specified maximum node size value

Pruning the Tree

Pruning → Optimizing a decision tree. This is accomplished by simplifying or
compressing by removing sections of the tree that are redundant to classify
instances. This process came about from an attempt to prevent overfitting in
trees.

There are two types of pruning.

● Pre-pruning
● Post-pruning

Pre-Pruning

● We know it as the stopping
criterion

● It stops the tree-building process
early, before it produces leaves
with very small sample sizes.

● It prevents a complete induction
of the training set by introducing
a stop criterion

Post-Pruning

● Post-Pruning is what people normally refer to when they say pruning.
● Nodes and subtrees are replaced with leaves to improve complexity.

Pruning can not only reduce the size but also improve the classification
accuracy of unseen objects.

● It is broken up into:
○ Bottom-Up Pruning
○ Top-Down Pruning

Post-Pruning

Bottom-Up Pruning

● Start from the terminal nodes and follow
the recursive upwards and then
determine the relevance of each
individual node. If the relevance for the
classification is not given, the node is
dropped or replaced by a leaf.

● Advantage: No relevant sub-trees can
be lost with this method.

● Methods: Reduced Error Pruning,
Minimum Cost Complexity Pruning,
Minimum Error Pruning

Top-Down Pruning

● Starts from the root node. Following the
structure, it checks and decides whether
a node is relevant for the classification
for all n items. If it is irrelevant, the node
is replaced by a leaf or dropped.

● Disadvantage: By pruning an inner
node, an entire subtree can be dropped.

● Methods: Pessimistic Error Pruning

Regression example
● We will be utilizing a similar dataset to the

classification example. The only difference between
the two datasets are in the decision columns.
Regression trees require numbers.

Features:

● Outlook → Sunny, Overcast, Rain
● Temperature → Cool, Mild, Hot
● Humidity → High, Normal
● Wind → Weak, Strong

Let’s Calculate the Global Standard Deviation (all golfers)
golf_players = {25, 30, 46, 45, 52, 23, 43, 35, 38, 46, 48, 52, 44,
30}

avg(golf_players) =

SD(golf_players) =
● Where x̄ is the average of

all x’s
● x is each individual

instance in the set of all x’s
● n is the total number of x’s

Feature Splitting

We must now calculate the standard deviation for each of the features.

The feature with the highest standard deviation reduction would be the
optimal feature. We continue calculating the Standard Deviation Reduction
until we reach terminal nodes.

● To calculate the Standard Deviation Reduction (SDR) first calculate the
Standard Deviation (SD) of the full dataset (shown in the slide above),
known as the global SD. Then calculate each features’ Weighted
Standard Deviation (WSD) and then subtract the WSD from the global
SD.

Standard Deviation Reduction Calculation

● First we need to calculate the WSD for each of the features.
● Looking at the Outlook feature, it divides into three categories, Sunny,

Overcast and Rain.
● We break the Outlook feature up into each of the categories because we

need to calculate the SD for each of the outlook candidates.

Sunny Outlook

golf_players = {25, 30, 35, 38, 48}

avg(golf_players |sunny) =

SD(golf_players | sunny) =

Overcast Outlook
golf_players = {46, 43, 52, 44}

avg(golf_players | overcast) =

SD(golf_players | overcast) =

Rainy Outlook

golf_players = {45, 52, 23, 46, 30}

avg(golf_players | rainy) =

SD(golf_players | rainy) =

Calculating the Weighted Standard Deviation

To calculate the WSD, we take each candidates’ number of instances, divide it
by total instances and then multiply it by their SD. For this category, there are
14 total instances.

WSD(outlook) = (4/14)x3.49 + (5/14)x10.87 + (5/14)x7.78 = 7.66

SDR(outlook) = 9.32 - 7.66 = 1.66

Repeat for all Features

Winning Feature

Tree Building
We can apply a stopping
criterion here. Since this is a
small data set, if there are 4
or less instances, we will stop.
Otherwise, we will be
overfitting the data.

Recursive Partitioning

Since the stopping criterion is not applied to the other two outlook features,
we now have to work on those partitions.

Final tree

Regression Tree
Implementation

in Python

Quote from stackexchange

“Any multi-way split can be represented as a series of two-way splits. For a
three-way split, you can split into A, B, and C by first splitting into A&B versus C
and then splitting out A from B.

A given algorithm might not choose that particular sequence (especially if, like
most algorithms, it's greedy), but it certainly could. And if any randomization
or stagewise procedures are done like in random forests or boosted trees, the
chances of finding the right sequence of splits goes up. As others have
pointed out, multi-way splits are computationally costly, so given these
alternatives, most researchers seem to have chosen binary splits.”

Advantages and Disadvantages of Decision Trees

Advantages

● Simple to understand and interpret
● Follows the same process by which

humans make decisions in real life
● Useful for decision-related problems
● Helps in visualizing all possible

outcomes
● Less data cleanup in comparison to

other algorithms

Disadvantages

● Overfitting issues
● They are unstable, when there is a

small change in data, it can cause a
large change in the structure of the
decision tree

● For classification trees, the information
gained can be biased

CaRT is more
connected to reality

than we realize.
Decision trees are important

to know and understand
because they are used for
more than just computer

science!

Some examples where decision
trees are used:

● Medical practices: used for
medical diagnosis

● Business analytics: expansion
opportunities based on sales

● Marketing strategies: using
demographics to determine
popular products

● Automated telephone
systems: “For customer
representative press 1”

Further Study: Language Modeling Applications

● Application of Semantic Classification Trees to Natural Language
Understanding

● Part of Speech Tags and Decision Trees for Language Modeling
● Automatic Classification of Dialogue Acts of Semantic Classification Trees

and Polygrams
● Multilingual Prosody Modeling Using Cascades of Regression Trees and

Neural Networks

Thank you for
listening!

References
● https://www.datasciencecentral.com/profiles/blogs/introduction-to-classification-reg

ression-trees-cart
● https://machinelearningmastery.com/classification-and-regression-trees-for-machin

e-learning/
● https://en.wikipedia.org/wiki/Decision_tree_pruning
● https://sefiks.com/2018/08/27/a-step-by-step-cart-decision-tree-example/
● https://sefiks.com/2018/08/28/a-step-by-step-regression-decision-tree-example/
● https://github.com/serengil/chefboost

https://www.datasciencecentral.com/profiles/blogs/introduction-to-classification-regression-trees-cart
https://www.datasciencecentral.com/profiles/blogs/introduction-to-classification-regression-trees-cart
https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/
https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/
https://en.wikipedia.org/wiki/Decision_tree_pruning
https://sefiks.com/2018/08/27/a-step-by-step-cart-decision-tree-example/
https://sefiks.com/2018/08/28/a-step-by-step-regression-decision-tree-example/
https://github.com/serengil/chefboost

