
AMS 561 Project

Implementing String Comparison in Python to Evaluate

Phonological Phenomena

Derek Andersen and Joanne Chau

May 4th, 2020

Project Objective

The objective of this project was to implement code in Python that can analyze two strings

(of the same length or of differing lengths), and return a ruleset that explains the changes

they underwent to go from string 1 → string 2, where string 1 is the input and string 2 is

the output. This type of analysis is something commonly done in the field of computational

phonology through the use of logical languages like first order logic and monadic second

order logic. Ideally, we would want to implement a method for the logical analysis of strings

in Python as well.

First, however, our goal is to write a program that can take two user-entered strings,

and provide information about their differences, and then return a possible ruleset that

describes the changes they underwent. For example, if the input string abab and the output

string bbbb were provided, we would like our program to tell the user that a became b.

In phonology, this type of approach is thought to be a constraint-based approach, through

which we can describe the changes that humans’ grammars force input strings to undergo,

before they are output in speaking.

The project was evenly split up between both Derek and Joanne. We both took part in

researching the topic, and coming together and sharing the information found among each

other, before communicating and writing the code together in a Jupyter notebook. As the

both of us shared knowledge from other classes we took together in our department, we

brainstormed the material together. Most of the knowledge in this paper were from prior

linguistics experience and knowledge that we gained from research on this material. We did

not utilize any packages in the functions we developed for this project. We also utilized

1

some of the coding skills and mathematical knowledge gained from the AMS 561 class from

this semester.

Techniques and Tools

For this project, we used Python. We started first by dealing with two strings of the same

length (e.g. abab and baba). Our first challenge was to write a function which can return

the Hamming distance of two strings of the same length. Hamming distance between two

strings is the number of of positions in which there is a difference between the strings at the

same position. In the case of our project, we will call these differences changes. [Wika] After

receiving this result, the next hurdle was to write a function that can return the changes

from string 1 to string 2. The main issue in this function was the representation of the

changes that would take place. We wanted to ensure that it documented the change specific

to the index.

For example, if we had two strings, abab and bbbb, the function should return something

that specifically states at index 0, a became b and at index 2, a became b. We decided the

best way to illustrate this fact was through the usage of a dictionary, where the keys were

the indices and the values were tuples of the change from string 1 to string 2.

After executing the two functions it shows that the number of entries in the dictionary

is equal to the integer returned by the hamming distance. This means that the number of

changes for the strings were recorded correctly for each index. This was a useful approach

to understanding the changes to input strings, but will run into issues when the strings are

of unequal distance. In speaking, often times, the length of string of both input and output

are not the same, especially in cases where reduplication, insertion and deletion comes into

play. For example, there can be a language that only allows vowels at the end of words.

Assuming that their grammar only allows for the characters a and b. If the input of the

string is baba, the output would be same. But if the input of the string is bab, the language

speakers will insert a vowel in order to make it grammatical in their language and the output

becomes baba. In this case, the length of the input and output are different.

We turn to Levenshtein distance for this. Levenshtein distance utilizes matrix forma-

tion between the two strings to come up with the minimal number of changes necessary.

[Wikb] We implement a function that would calculate the Levenshtein distance for us and

run it on the string abab and baba. [Hof] The Levenshtein distance for these two strings

is 2. If looking at this based off of indices, we would assume 4 total changes, but based

off of the matrix provided by Levenshtein, there are only 2. It can be interpreted as the

2

first a being deleted and a final a is added to change from the first string to the second string.

The issue we run into now is that our currently changes in string is not capable of

calculating the changes for the minimal changes needed. When both functions are run

against each other, it can be shown that the number of entries in the dictionary provided

by changes in string is not equal to the integer returned by the Levenshtein function.

Another issue encountered is that Levenshtein accounts for strings of different lengths but

the changes in string function assumes that the strings are of the same length.

Results

Our current functions are able to mark changes based off of indices of strings of the same

length. We also have a working code that calculates the smallest number of changes needed

from string 1 to string 2. Unfortunately, the current code is unable to calculate and pro-

vide the specific change taken place when calculating for the minimal changes between two

strings.

Conclusion

In order to expand our code to further attest for strings, we would need to first implement

our code for changes in string to handle strings of differing lengths. This can be done by

adding dummy characters for a string. For example, the strings abab and ab, the string ab

is shorter than the first string, so we will pad it with dummy characters to match the string

lengths, and the string will become ab$$, ab or $$ab. A specific location for padding must

be determined before the implementation of the code. This then will allow us to see all

indices comparison between the strings, even of different lengths.

After this, we need to implement the Levenshtein code where we can put place holders

on indices and their changes to mark the smallest number of changes. Then the program

must evaluate the possible changes that must have occurred in order to obtain the minimal

changes between two given strings. When this is done, in order to achieve our original intent,

we would have to write more code that would help evaluate the changes into First Order

Logic and then apply it to real phonological phenomenon, not just strings from a limited

alphabet of a and b.

3

References

[Hof] Frank Hofmann. “Levenshtein Distance and Text Similarity in Python”. In: (). url:

https://stackabuse.com/levenshtein-distance-and-text-similarity-in-

python/.

[Wika] Wikipedia. “Hamming distance”. In: Wikipedia (). url: https://en.wikipedia.

org/wiki/Hamming_distance.

[Wikb] Wikipedia. “Levenshtein distance”. In: Wikipedia (). url: https://en.wikipedia.

org/wiki/Levenshtein_distance.

4

